123 research outputs found

    Robot-Assisted Rehabilitation of Forearm and Hand Function After Stroke

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement

    Full text link
    BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate

    Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy

    Full text link
    Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level ( and correlation ). SCR increased the reproducibility from 0.64 to 0.81 ( ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications

    Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy.

    Get PDF
    Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level ( and correlation ). SCR increased the reproducibility from 0.64 to 0.81 ( ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications

    Design of a Wearable Perturbator for Human Knee Impedance Estimation during Gait

    Get PDF
    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device’s mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation

    Thick-film multi-DOF force / torque sensor for wrist rehabilitation

    Get PDF
    A complete six–degree-of-freedom (6-DOF) force / torque sensor has been designed and fabricated for wrist rehabilitation applications, with the focus laid on simple, straightforward manufacturing processes. This paper details the mechanical design, 3D-modeling, manufacture and characterisation of the sensor. Compared to previous work, this design has the advantage of simple, fully planar machining, and the load-sensing elements all lie on the same plane, making the device compatible with single-film deposition or a foil bonding process. The sensor was machined from steel, and the piezoresistive load-sensing bridges were deposited using thick-film technology. We used commercial thick-film materials in a first time. A new lead-free materials system compatible with low processing temperatures (<700°C) will shortly replace the commercial one and is expected to eventually also be adaptable to aluminium substrates

    Design and Evaluation of a Fiber-Optic Grip Force Sensor with Compliant 3D-Printable Structure for (f)MRI Applications

    Get PDF
    Grip force sensors compatible with magnetic resonance imaging (MRI) are used in human motor control and decision-making research, providing objective and sensitive behavioral outcome measures. Commercial sensors are expensive, cover limited force ranges, rely on pneumatic force transmission that cannot detect fast force changes, or are electrically active, which increases the risk of electromagnetic interference. We present the design and evaluation of a low-cost, 3D-printed, inherently MRI-compatible grip force sensor based on a commercial intensity-based fiber-optic sensor. A compliant monobloc structure with flexible hinges transduces grip force to a linear displacement captured by the fiber-optic sensor. The structure can easily be adapted for different force ranges by changing the hinge thickness. A prototype designed for forces up to 800 N was manufactured and showed a highly linear behavior (nonlinearity of 2.37%) and an accuracy of 1.57% in a range between zero and 500 N. It can be printed and assembled within one day and for less than $300. Accurate performance was confirmed, both inside and outside a 3 T MRI scanner within a pilot study. Given its simple design allowing for customization of sensing properties and ergonomics for different applications and requirements, the proposed grip force handle offers researchers a valuable scientific tool

    Reward During Arm Training Improves Impairment and Activity After Stroke: A Randomized Controlled Trial

    Full text link
    Background Learning and learning-related neuroplasticity in motor cortex are potential mechanisms mediating recovery of movement abilities after stroke. These mechanisms depend on dopaminergic projections from midbrain that may encode reward information. Likewise, therapist experience confirms the role of feedback/reward for training efficacy after stroke. Objective To test the hypothesis that rehabilitative training can be enhanced by adding performance feedback and monetary rewards. Methods This multicentric, assessor-blinded, randomized controlled trial used the ArmeoSenso virtual reality rehabilitation system to train 37 first-ever subacute stroke patients in arm-reaching to moving targets. The rewarded group (n = 19) trained with performance feedback (gameplay) and contingent monetary reward. The control group (n = 18) used the same system without monetary reward and with graphically minimized performance feedback. Primary outcome was the change in the two-dimensional reaching space until the end of the intervention period. Secondary clinical assessments were performed at baseline, after 3 weeks of training (15 1-hour sessions), and at 3 month follow-up. Duration and intensity of the interventions as well as concomitant therapy were comparable between groups. Results The two-dimensional reaching space showed an overall improvement but no difference between groups. The rewarded group, however, showed significantly greater improvements from baseline in secondary outcomes assessing arm activity (Box and Block Test at post-training: 6.03±2.95, P = .046 and 3 months: 9.66±3.11, P = .003; Wolf Motor Function Test [Score] at 3 months: .63±.22, P = .007) and arm impairment (Fugl-Meyer Upper Extremity at 3 months: 8.22±3.11, P = .011). Conclusions Although neutral in its primary outcome, the trial signals a potential facilitating effect of reward on training-mediated improvement of arm paresis. Trial registration ClinicalTrials.gov (ID: NCT02257125)

    A low-dimensional representation of arm movements and hand grip forces in post-stroke individuals

    Get PDF
    Characterizing post-stroke impairments in the sensorimotor control of arm and hand is essential to better understand altered mechanisms of movement generation. Herein, we used a decomposition algorithm to characterize impairments in end-effector velocity and hand grip force data collected from an instrumented functional task in 83 healthy control and 27 chronic post-stroke individuals with mild-to-moderate impairments. According to kinematic and kinetic raw data, post-stroke individuals showed reduced functional performance during all task phases. After applying the decomposition algorithm, we observed that the behavioural data from healthy controls relies on a low-dimensional representation and demonstrated that this representation is mostly preserved post-stroke. Further, it emerged that reduced functional performance post-stroke correlates to an abnormal variance distribution of the behavioural representation, except when reducing hand grip forces. This suggests that the behavioural repertoire in these post-stroke individuals is mostly preserved, thereby pointing towards therapeutic strategies that optimize movement quality and the reduction of grip forces to improve performance of daily life activities post-stroke
    corecore